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1. INTRODUCTION 

The theory of optimal control has received a new impetus through 

the papers of Gamkrelidze [l] and Neustadt [ 21. It seems clear now 

that the optimal control problem should be studied as an extrema1 problem 

In a Banach space o r  a locally convex space. The motivation for this 

generality is derived from the study of optimal control problems with 

trajectory constraints, This author has arrived at the problem formu- 

lated in  Section 3 through the study of nonlinear programming in general 

spaces [ 31. The results obtained are similar to those s f  Neustadt, but 

the method of proof and the motivation appears to be different. It is 

hoped that this paper serves as a common framework for both optimal 
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2. NOTATION, DEFINITIONS AND A PRELIMINARY RESULT 

Throughout this paper, X and Y will denote arbitrary real 

Banach spaces, All  undefined terms can be found in  Dunford and 

Schwartz [ 41. 

Def. 2.1. A function f : X -+ Y is differentiable (Frgchet-differentiable) 

at a point x i f  there is a continuous linear function, f'(E), mapping X 

into Y such that 

f(x t € W )  - f(x) = <f'(x), 2> = A f'(x) (2) 
E 

Lim 
€ 4  o t  
w*2 

In addition to a linear approximation of a function at a point we shall 

need a 'linearD approximation of a set  at a point. 

Def. 2.2. Let A be an arbitrary subset of X and let  x p A. For  each 

neighborhood N of x Pet @(AnN, x) denote the smallest closed cone, 

with vertex 0, A containing khe set A n N  .. x = (2 - x 12; e AnN). Let 

be the neighborhood rsystem a t  x., Then the set 

is called the.,local cone of A at X. 

Def. 2.3a. Let A be an arbitrary subset of X and x e A. The set 

' m  



in  X” is called the local polar of A at x. 

A Def. 2.3b. If K is a cone then P(K) = L P ( K ,  0). 

Remark 2.la. The local cone is a nonempty (it always contain 0) closed 

cone and the local polar is a nonempty closed convex cone. 

alternative characterization of the local cone is given by the next fact. 

L b. A useful 

Fact 2.1, The following statements a re  equivalent. - a, z e LG(A,  x). 

b. There exist sequences (x 1 C A ,  (Xn) X > 0 such that, x + x  and 

- x) + z .  e ,  There exist sequences ( z  1 C X, {e 1 ,  E > 0,  such 
n -  n n - 

n -  n an X n ( x ~  - 
that E * O ,  z -+z and (x t E z 1 E A. n n n n  

- 
Proof. 

and b. - follows directly Prom Def, 2.2 using a standard Cantor diagonal 

Trivially - b. and I e .  a re  equivalent. The equivalence of - a. 

a r gurnent Q. E. D. 

The justification of the two linear approximations is provided by 

the following elernentrery but extremely useful result, 

Theorem 2.1. Let f be a real-valued function 0f x and A an arbitrary 

subset of X. Let x in A be a solution (2.1) 

* 3 X denotes the space of all real-valued, continuous linear functions 
on X, 



Then, if f is differentiable (see Def. 2.1) at x we must have 

(2.2) f'(x) r LP(A, x) 

. 
Proof. 

By Fact 2. IC there a r e  sequences e 

Let z r LC(A, x). We have to show that <ft(x),  a> I O1 

e, en* 0 t such that n 
= (x t E xn n n  z ) E A ,  Since x solves (2.1), f(xn) - f(x) d 0. Hence, 

f(x 4- en en) - f(x) 
5 8  

E n 

Taking the limit a s  n-m, we get (2.2) from Def, 2.1. 
Q. E. ID, 

Remark 2.2, The definitions of derivative, local cone and local polar 

make sense for arbitrary linear topological spaces. Fact 2.1 is valid 

if we replace psequence' by 'generalized sequence' or 'net'. Theorem 

2.31 still remains true. 

3. STATEMENT OF THE MAIN THEBREM AND SOME COMMENTS 

Theorem 3.1.  

valued differentiable function of x, and g, a continuously Frkchet- 

Let X and' Y be real  Banach spaces. Let f be a real-  

differentiable function from X to Y. 

that - x solves (3.1) 

Le% A be a subset of X and suppose 

(3*  1) Max(f(x) 1 g(x) = 8, x e A) 



Let G E gt(x) be the derivative of g at X. 

convex cone contained in LC(A, - x), 
tions A1 and A2 there exists a number p 2 0 and a y in Y not both 

zero such that ’ 

Let K be any closed 

Then if G and K1 satisfy assump- 
1 - - 

* * 

- Al. Suppose G(K1) = Y and let  z E K1, e # 0. Then we shall assume 

that there is  a closed convex cone K, depending on z and contained in 

K, which satisfies the following conditions: - 1. G(K) = Y. - 2. There 

exists a closed linear subspace Z of X containing M such that K has 

a nonempty interior K relative to Z and 2; cKo.  - 3 .  Finally if z(c)  0 
for e > 8 is an a r c  in K 

the right at = 0 with ~ ~ ( ( 0 )  = z ,  then there is a sequence e 4 8  such 

that (x - -k Z ( E ~ ) )  is in A for each n. 

such that Z(E)  ‘-40 and z is differentiable f rom 0 

n 

Comments. 

most problems they a r e  satisfied. In most applications of discrete and 

continuous optimal control the range space Y is finite-dimensional. In 

this ease, it can be easily shown that these assumptions a r e  autornati- 

The assumptions A2 a r e  of a technical nature and in 

caPly satisfied. 

The assumptions AI a r e  far more serious, and can be considered 

as compatibility requirements at the optimal point, between the function 



g, the set  A and their ‘linear’ approximations 6 and 5. 
.in section 5 these requirements a r e  satisfied by most optimal control 

problems. See also [ 1, 2, 31.  

As is shown 

The requirement of the strong differentiability of g can be 

replaced by the weaker notion of differentiability if Y is finite- 

dimensional. 

Lernma 2 of the Appendix. 

to prove it, that this result  is valid with only the weaker notion of 

differentiability . 

The only place the stronger notion is employed is in 

It is probable, although the author is unable 

4. PROOF OF THE MAIN THEOREM 

The proof is divided into two parts; the first case takes care of 

the degeneracies which may arise, the second case is the important ,, 

one 

A- Case P. Let Q = G(Kj. Suppose Q # Y. Then Q is a proper 
* * c  closed convex cone in Y so that there is a y in Y y f 0 such 

that 

< y*, tjy> s o for a11 tjy in Q 

d. < y” ~ ( b x ) >  s o for all 6x in K ~ .  

Hence Equation (3.2) is satisfied with p = 0 and y* f 0. 

A- Case 2. Suppose Q = 6(K$ = Ye Then by assumption A2, 

- 6- 



(4.1) G(K1) = Y 

Let A =a ix I g(x) = 0 )  and let  N 4 (x I G(x) = 0 )  e W e  will now prove 

the irnportgnt fact that 
13 

. a  

Let 2; E K l n N  and suppose z # 0. 

closed convex cone IS c K1 which satisfies the following conditions: 

1. @(IS)= Y. 2, There is a closed linear subspace 2 of X containing 

K such that K has a nonempty interior KO relative to Z and 2; is in 

KO” 
z(e), E > 0,  contained in K 

By assumption Al, there exists a 

_. 

By the corollary to L e m a  2 0f the Appendix there exists an a rc  

such that it is differentiable from the right 0 

at E = 0 and S U C ~  thi2t 

and 

But then by assumption Az, &here is a sequence E - c O  such that, 

(-. x 4- Z [ E ~ ) )  is in A for each n. 

PP 

Because of 44.3) we see that 

(4.41 x t Z(E,)) e {A n A) for each M. 
(- 8 



But by Fact 2.lc Equation (4.3) implies that 

z E LC(A n A, - x) 
g 

which proves the assertion (4.2). 

local polar (4.'2) implies that, 

Directly from the definition of the 

Since - x is a solution of the problem (3.1), Theorem 2.1 says that 

(4.4) f'(x) - c L P ( A  n A, - -  x)C p(K1n N). 

It is straightforward to show [ 3 ,  p. 121, using the strong separation 

theorem [4 ,  p. 4l?] that 

By assumption A2 P(K ) -k P(N) is dosed, so 
1 

ha (4.4) and (4.7) give, 

By ([l], p. 487)# using Equation (4.1) and Def, 2,3b we obtain, 

4. * >g * where y 0 G is tRe element in X 

F r o m  (4.8) and (4.9) we see that there is a y 

given by < y ,,e GX >. E <y", @x>. 
* * 

in Y such that 

I[fW -0- Y* " e;) e P(5) 

Hence (3.2) is again satisfied with p = 1, and the proof is completed. 
Q. E. 19. 



5 .  APPLICATION OF THEOREM 4.1 

A. Discrete Optimal Control 

Consider a difference equation, 

x(k t 1) = x(k) t f(x(k), u(k)) k = 0, 1, a 

where x E X i s  the state vector, u E U is the control vector and 

f : X X U +X is a continuously Frdchet-differentiable function. X and 

U a re  arbitrary B-spaces. 

duration of the process4 

the initial and target set  respectively. 

Let n be a fixed integer representing the 

Let A. and An be subsets of X representing 

Let S2C - U be the set  of available 

a h  function g $8 a real-valued differentiable function 

on Xn X ITnnP* We a r e  required to  

(5.1) Max(g(x(O), e ., x(N); u(O), . u(n - I)) 
subject to 

for 0 s k s n - B  

and 

(5.3) x ( 0 )  E .AQs xgn) E A,, u(k) E Q for 8 5 k 5 n - P 

Let (II(O), e * 9  I u(n - 1)) be the optimal control and (x(O), - . * . 9  - x(n)) 

be the optimal trajectory. 

in EC(AOp - x(0)) and L@(A,, - x(n)) respectively, Let ai be a closed 

Let ,KO, E( be closed CQIIV~X cases cpntained n 



convex cone contained in LC(!2, L u( i ) )  for 0 

the function, 

i 5 n - 1. Now we form 

'* 
where the +(k) belong to X . 

Suppose the conesdefined above, the function h and the constraint 

sets satisfy the assumptions of Theorem 4.1, Then there exists 

p = 2 0, +(k) = k(k) not a11 zero such that 

a @  < ,- tix) 5 o for t iue Q ~ ,  o s k 5 n - 1 .  

where the derivatives a r e  evaluated at p = E, x(k) = ~(k), u(k) = - u(k) 

and +(k) = &(k). 

usual necessary conditions for discrete optimal control. 

Now i f  we expand the above equations we obtain the 

-10- 



Remarks. 

above equations. 

1. The conditions given in [ 51 a r e  a special case of the 

2. The fact that we allow our state variables to  be 

infinite-dimensional will also enable us to consider discrete stochastic 

optimal control problems. See [ 31 for an elementary example. 

B. @ontinuous -Time Optimal Control 

Let be the linear space whose elements f(x, t) a r e  n- 

dimensional real  vector-valued functions for x in Rn and t in a fixed 

finite closed interval 3[. = [to,, ‘$1 e The functions f satisfy certain 

smoothness conditions in x and some integrability conditions in t. Let 

F be a quasi-convex subset of t!f * For the precise conditions and defi- 

nition the reader is referred to Gamkrelidze [l] and Neustadt [ 21. 

relevance of the various assumptions made in the sequel to optimal 

The 

control problems is also discussed in these referencesc 

Now for any f in F, let  xet), t in 1 be any absolutely continuous 

solution of the differential equation 

(5.41 k(t) = f(x(t), t), 8 in P 

W e  shall regard such a function x as an element of the Banach space 

X of all continuous functions from th,e compact interval 1 into Wn. 

also define A to be the set  consisting of those elements x in X which 

a re  solutions of (5.4) for some f in F. 

differentiable function of x in x and let g : x + R ~  be continusuly dip- 

ferentiable function. 

W e  

Now let h Be a real-valued 

W e  wish to solve the following problem: 

-1 l- 



(5.5) Max{h(x) I g(x) = 0, x c A) 

Let x be a solution of (5.5) and suppose that - 

k(t) = -- f(x(t), t), t in I (5.6) - 

for some f in F. 

the linear variational equation of (5.61, 

Let [F] denote the convex hull of F, and consider - 

for t in 1. 

6x(t 

solution of the homogeneous matrix differ entia1 equation 

Here Af is any arbitrary element of the set  {[F] .. - f )  and 

= 5 is any arbitrary n-vectorr Let q ( f )  be a non-singular matrix 0 

with q(tQ) = 1, the identity matrix, Then the solution of (5.7) is 

Let KC - X be the collection of all Sx which satisfy (5.8) for some 5 in 

Wn and some function Af in ([F] - - f} a 

Kl be the closed convex cone generated by IS. 

quasi-convexity and the (generalized) @ronwal18s lemma [ 6 ] it is easy 

to show that K C  - L@(A, - x). 

Clearly K is convex and le t  

Using the definition of 

W e  therefore have 

-12- 



L e m m a  5.1. F is quasi-convex 3 K 1 c  L LC(A, - x). 

In order to  apply Theorem 3.1 we have to verify that assumptions A1 

and A2 a r e  satisfied. 

dimensional, A2 is automatically satisfied. 

First of all since the range of g is finite- 

Let G be the derivative of 

g at the optimal point _I x, and suppose that C(K1) = Rms Let e e Kly 

a # 0 and G ( a )  = 0. Let X be a simplex in Rm, generated by the 

points, YO' ' 

be in 5 such that G(k$ = yi for 0 5 i 5 me 

' 9  Y, containing 0 in its interior. Let ko, . . . , km 

Let K be the polyhedral I 

ted by ko8 km. Using the definition of quasi-convexity 

and the (geheraliaed) GronwallOs lemma it can be shown that K satisfies 

assumptio6 AI. 
I 

Then by Theorem 3.1 there exists numbers p Z 0, 

X I '  * * " 8  hm mot a11 aero such that, 

where A = (A,, . 
maximum principle, f rom Equation (5.9). 

Xm). 'Following Neustadt [ 21 we can obtain the 

Remarks. Theorem 3.1 deals with a problem which may have infinitely 

many constraints(since X and Y a re  arbitrary Banach spaces). How- 

ever in  the above application we have only considered finitely many 

constraints since Y = Rme It appears to the author that the notion of 

quasi-convexity is too weak in that, generally, assumption A1 will not 

be satisfied for any arbitrary Banach space Y. 

of quasi-corkex, these conditions usually hold. 

If F is convex instead 
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APPENDIX: PROOF OF LEMMA 2 

( 

W e  shall prove two results which a r e  of independent interest  

and which a re  also required to complete the proof of Theorem 3.1. . 
Lemma 1. 

linear mapping from X into Y. 

Let X and Y be real  B-spaces and let G be a continuous 

Let K be a closed convex cone in X 

such that G(K) = Y. 
A For each p > 0, let K = {Sx-l lSxl < pr Sx E K} . Then there P 

is a number rn > O 0  independent of ps such that 

where S is the closed sphere in Y of center 0 and radius mp, 
"P 

Proof. This result is a generalization of the Interior Mapping 

Principle. Although the proof is long, it is a straightforward modifica- 

tion of that given by Dunford and Schwartz". Hence the proof is omitted. 

Q, E. D. 

H,enlrna 2, Let PI; be a closed convex cone in X, and gs a continuously 
- ^  

Fre/chee-differerztiab~e function from X to Y such that g ( 0 )  = 0. 

G 5 g ' ( 8 )  and suppose that there is a number m > 0 such that for 

Let 

P 0, Let 2 E K, and G ( z )  = 0. Then there 

exists a number JE > 0, and a function O(E)  such that for all 0 < CE +c 

the seat ~ ( ' I z  Q ) i 6  a ncighborhosd of 0 in U. 
8 

* 
Dunford and Schwartz, Linear Operators Par t  IC, pp. 55-56, 



Proof. Let v: X +Y be the function defined by v(x) = g(x) - G(x). 

, Then, 

Therefor e, 

Also, 

Pick a number E > 8 such that for 0 < e e eo,, 0 

and 

-1 4- 
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Fix 0 < E < eo and let  y E Y with l y i  < o(6). 

1 1 Let xo E K such that G(xo) = y and lxol < E Iy I < o(e) .  

Let x1 z K such that G(xl - xo) = -v(e z t xo) and 
1 1 Ix, - xol < I V ( € Z  4- x*l < O(E). 

For n 1 I, let xntl E D with G(xnt1 - xn) = -V(€ z t xn) t V(€ z t xn - 
1 

and 1xn, - x,I < o(E). 

We first show that for n Z 0, 

a r e  valid. Firstly, 

Ix I < E so that the above inequalities 

By induction on n, 

In particular, Ixntl - 3 I < e so that Ix,, 1 < 4 o(e) < e .  Also xn 

4 converges, Let lim xn = x .  Then Ix I < O(E) and x e K. NOW, 



G(xl) - G(xO) = -V(C t x0) 

G(xZ) - G(xl) = -Y(E z t xl) t V(C z + x0) 

a 

b . 

Adding both sides we get, 

But xn+x so that &(E z t xi = y. Apso x E D and 1x1 

The r e for e 

Corollary, 

function with g(x) - = 0 ,  

Let g : X -.Y be a continuously Fr6chet-differentiable 
A Let G = g’(5). Let K be a closed convex cone 



in X with G(K) = Y, and let  2 be a closed linear subspace of X such 

that K has nonempty interior K 

G ( z )  = 0. 

relative to  2, Let z E Kg with 

such that 
0 

Then there exists an  arc Z ( E ) ,  E > 0 in K 0 

1) 

2) 

z(e) -t 0 as a d 0  

Z ( E )  is differentiable f rom the right at e = 8 with ~ ' ( 0 )  = z 

and 

g(x f z ( E ) )  = 0 for all E . 3)  

Proof, 

g(5  9 E z f K 

By Lemmas P and 2 there exists a function o(e) such that 

) is a neighborhood of 0 in Y e  
o(4  

Then for a > 0 there exists a vector x(6) in K with Ix(E) I < o(a ) 

such that g(x t E z t X(E) ) = 0. Define Z ( E )  = E z t x(P), The rest - 
Q. E. D. follows 



REFERENCES 

1, R. V. Gamkrelidze, "On some extremal problems in the theory of 

differential equations with applications to  the theory of optimal . 
control, f r  J. SLAM, Ser A: Control 3, 1965. 

2, E, W, Neustadt, "Optimal control problems as extremal problems 

in a Banach space, Technical Report USCEE Report 133, 

Sciences Laboratory, University of Southern California, 

M a y  1965. 

3. J?. P. Varaiya, "Nonlinear programming and optimal control, 

E R E  Tech. Memo. M-129, Electronics Research Laboratory, 

University of California, Berkeley, California, September 19 65. 

4. N. Dunford and 9. %, Schwartz, Linear Operators Part I, 

Interscience Publishers, In@. New York, 1964. 

5, B, We Jordan and E. Polak, YL"eory of a class of discrete 

optimal control systems, J, Electronics and Control, 2, 

6. G, Sansone and Re Conti, Nonlinear Differential Equations, The 

Macmillan Company, .New Y ork, 1964. 


